Synthesis and properties of alkali-metal lithium periodatoferrate(III) and periodatocobaltate(III) complexes

David B. Currie,^a Andrew L. Hector,^a William Levason*^a and Michael Thomas^b

^aDepartment of Chemistry, University of Southampton, UK SO17 1BJ

^bDepartment of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK L69 3BX

The pale-yellow LiMFeIO₆ (M = K, Rb or Cs) have been prepared by reaction of MIO₄, Li⁺ and $[Fe(H_2O)_6]^{3^+}$ in hot aqueous solution at pH 9. Olive-green LiMCoIO₆ were prepared from MIO₄, Li⁺ and $[Co(H_2O)_6]^{2^+}$ in hot alkaline solution using ozonised oxygen as oxidant. These insoluble powders have been characterised by analysis, IR and Raman, UV–VIS and EPR spectroscopy and magnetic measurements. PXRD studies revealed that they are amorphous, but structural data have been obtained *via* Fe or Co and I K-edge EXAFS, and are consistent with a layered periodate structure type similar to that found previously in MM'IO₆ (M'=Mn, Ni, Ge, *etc*). ⁵⁷Fe Mössbauer data are reported for LiKFeIO₆.

Orthoperiodate groups, $[IO_6H_{5-n}]^{n-}$ function as strong O-donor ligands towards many metal ions. Two basic types of complexes may be isolated from syntheses in aqueous solution, discrete anions such as $Na_7[Mn{IO_5(OH)}_2$ $\{IO_4(OH)_2\}$]·18H₂O or H₃[Co₄I₃O₁₈(OH₂)₆], and those containing extended layer structures.¹ The latter type M[M'IO₆] where M is an alkali metal $(M \neq Li)$ have been characterised with several tetravalent metals (M'=Mn, Ni, Ge, Sn or Pb).²⁻⁴ They have structures which can be described either as M' bound to three bidentate periodate [IO₆]⁵⁻ groups, each periodate binding three M' ions to form an extended layer, or as a close-packed double layer of oxide ions with M' and I each filling 1/3 of the octahedral holes within the layer in a regular manner. The alkali metal ions lie between the layers. The radius of M' is important in the formation of these species since neither Si^{4+} nor Ce^{4+} form similar structures, presumably being too small and too large respectively.^{2,5} In principle trivalent ions could form similar compounds with either H^+ or a second M⁺ ion balancing the charge. One possible example of this type is LiKFeIO₆ reported by Procke and Slouf⁶ in 1939 as a complex for the gravimetric determination of lithium. Apart from a brief account of its IR spectrum⁷ no characterisation of this complex is available. We have reported elsewhere⁸ the characterisation of other iron(III) periodates, $M_n[Fe_4I_3O_{24}H_{15-n}]$ (M=K, Rb or Cs, n=4; M=Na, n=5; M = Li, n = 6) which contain an Anderson type polyanion composed of seven edge-linked octahedra. A bis(periodate) $Na_5[Fe(H_2IO_6)_2(OH)_2]$ has been claimed,⁹ although we have suggested⁸ that this may be a mixture. The cobalt(III) Anderson polyanion $H_3[Co_4I_3O_{18}(OH_2)_6]$ is well characterised¹⁰⁻¹² and a green Na₅[Co(H₂IO₆)₂(OH)₂] of unknown structure has been reported.10

Results and Discussion

Iron complexes

Procke and Slouf⁶ prepared LiKFeIO₆ by adding a solution of a lithium salt to a hot aqueous alkaline solution containing KOH, KIO₄ and FeCl₃ under carefully controlled conditions. We found it was easier to add a solution of iron(III) nitrate in water to a hot (95 °C) aqueous alkaline solution containing K^+ , Li^+ and $[IO_4]^-$ ions in a 1:1:1 mol ratio. A fawn-yellow solid precipitated immediately, which was filtered from the hot solution. It is important to keep the pH ≥ 9 , otherwise darker materials co-precipitated probably containing the Anderson type anions. Rubidium and caesium salts were prepared similarly, but attempts to isolate a pure sample of LiNaFeIO₆ were unsuccessful, analysis and the IR spectrum of the product suggesting substantial contamination with the poorly soluble Na₃H₂IO₆. Indeed reaction of NaIO₄ with NaOH in hot aqueous solution precipitates either Na₃H₂IO₆ or Na₂H₃IO₆ depending upon the conditions.¹³ Attempts to prepare Li₂FeIO₆ or BaFeIO₆ from similar reactions containing appropriate mixtures of ions were unsuccessful.

The LiMFeIO₆ complexes (M = K, Rb or Cs) are pale yellow powders, insoluble in water or aqueous alkali but soluble with decomposition in mineral acids. The IR spectra (Table 1) are essentially independent of the alkali metal present, and show the absence of v(OH), $\delta(HOH)$, $\delta(IOH)$ modes indicating the complexes are anhydrous and the periodate groups are not protonated. The absence of a feature at *ca*. 840 cm⁻¹ also excludes the presence of tetrahedral $[IO_4]^-$ groups.^{7,14} The spectra are similar to those of M[M'IO₆]^{3,15} and thus support the presence of FeIO₆ groups. The UV–VIS spectra are also independent of the cation and show a strong very broad

LiKFeIO ₆ ^b IR	LiRbFeIO ₆ ^b IR	LiCsFeIO ₆ ^b IR	LiKCoIO ₆		LiRbCoIO ₆		LiCsCoIO ₆	
			IR	Raman	IR	Raman	IR	Raman
760	760	760	780		775		775	
682	680	683	640	682	640	684	645	680
503	505	505	542	497	545	498	541	500
430	433	428	405	423	400	432	400	423
305	301	303	368	349	366	350	368	350w
205	203	200	199	223		224		236

Table 1 Vibrational spectra of LiMFeIO₆ and LiMCoIO₆ (cm⁻¹)^a

"IR as Nujol mulls, Raman powdered solid samples. "The iron samples decomposed in the laser beam preventing Raman studies.

Fig. 1 UV-VIS (diffuse reflectance) spectrum of LiRbFeIO₆

absorption over the range $35\,000-25\,000\,\mathrm{cm^{-1}}$, which is assigned as $\mathrm{IO}_6(\pi) \rightarrow \mathrm{Fe}(\mathrm{d})$ charge transfer, with very much weaker features at $25\,000(\mathrm{sh})$, 21 300 and 13 900 cm⁻¹ assignable as spin-forbidden d–d bands, in O_{h} symmetry respectively as ${}^6\mathrm{A}_{1\mathrm{g}} \rightarrow {}^4\mathrm{A}_{1\mathrm{g}}$, ${}^4\mathrm{E}_{\mathrm{g}}$, ${}^6\mathrm{A}_{1\mathrm{g}} \rightarrow {}^4\mathrm{T}_{1\mathrm{g}}$. A typical example is shown in Fig. 1. The room-temperature magnetic moments ($\mu = 4.95 \pm 0.05 \,\mu_{\mathrm{B}}$) are consistent with high-spin d⁵ iron(III) although lower than the spin-only formula predicts (5.9 μ_{B}). Iron(III) oxo species are often not magnetically dilute.¹⁶ The EPR spectra show broad featureless resonances at g ca. 2, typical of high-spin Fe^{III}.¹⁷

The ⁵⁷Fe Mössbauer spectra of powdered LiKFeIO₆ were recorded at 300 and 4.2 K. At both temperatures a doublet was observed with isomer shifts of 0.37 and 0.49 mm s⁻¹ respectively, typical¹⁸ of six-coordinate high-spin Fe^{III}. The spectrum at 4.2 K is shown in Fig. 2. The quadrupole splittings (mm s⁻¹) of 0.74 (300 K) and 0.77 (4.2 K) confirm that the iron site has lower than cubic symmetry, consistent with the D_3 environment expected. The spectra were modelled to one and two components, and for the latter, with the abundance ratios varied from 1:1 to 1:9. Overall the fit to the two sites was better than the single site fit, but the fit was insensitive to the relative abundance of the two components. The very similar parameters of the two sites indicate that the difference is not in the first coordination sphere, but is a more subtle effect and may be due to different alkali metal positions with respect to the iron centres. The 4.2 K spectrum shows magnetic ordering is absent in these complexes, in contrast to the behaviour of the Anderson polyanion,⁸ which is magnetically ordered at the low temperature.

Cobalt complexes

Olive-green cobalt(III) complexes $LiMCoIO_6$ (M = K, Rb or Cs) precipitate on slowly adding $[Co(H_2O_6)^{2+}]^{2+}$ to a hot, dilute, strongly alkaline solution containing Li^+ and MIO_4 through which ozonised oxygen is passed. Ozone was used in preference to other oxidants such as OCl^- or $[S_2O_8]^{2-}$, since these tend to introduce Cl^{-} or $[SO_4]^{2-}$ impurities. It is essential to add the Co^{II} solution slowly, otherwise oxidation to Co^{III} is incomplete, and the products are distinctly paramagnetic (below) owing to incorporation of Co^{II}. The LiMCoIO₆ are completely insoluble in water or alkali, although when freshly prepared they tend to form fine suspensions which are difficult to filter. The previously reported $H_3[Co_4I_3O_{18}(OH_2)_6]$ and Na₅[Co(H₂IO₆)₂(OH)₂] are soluble in aqueous alkali. The only previous mention of a 1:1 cobalt(III)-periodate was by Malaprade,¹⁹ who described an impure green material with Co^{III}: I ratio of 1:1 but which incorporated variable amounts of Na⁺ and Co^{II}.

As in the iron analogues described above, the spectroscopic properties of the LiMCoIO₆ (M = K, Rb or Cs) are essentially independent of M, for example the vibrational spectra (Table 1). The diffuse reflectance UV-VIS spectra (Fig. 3 shows a typical example) contain bands at ca. 15750, 27250(sh) and $36\,000 \text{ cm}^{-1}$. The first two bands can be assigned as the d-d transitions of low-spin Co^{III}, ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ and ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ in O_{h} symmetry (the actual symmetry cannot be higher than D_3 but no splittings were resolved). The bands occur at similar energies to those in $[Co(H_2O)_6]^{3+}$.²⁰ Low-spin six-coordinate cobalt(III) complexes are expected to be diamagnetic, possibly with a small contribution from temperature independent paramagnetism.²⁰ The LiMCoIO₆ samples were weakly paramagnetic ($\mu \leq 0.7 \mu_B$) which we attribute to TIP and probably some small amounts of cobalt(II) contamination. The magnetic susceptibility varied slightly from sample to sample, and samples prepared from concentrated solutions or by rapid addition of the $[Co(H_2O)_6]^{2+}$ solution were significantly more paramagnetic ($\mu \ge 1.5 \mu_B$), no doubt due to co-precipitation of

Fig. 2 5^{7} Fe Mössbauer spectrum of LiKFeIO₆ at 4.2 K showing the two-site fit with a 1:1 ratio of the components

Table 2 EXAFS data^a

compound	K-edge	$d(\text{Fe/Co-O})/\text{\AA}$	$2\sigma^2/{ m \AA}^{2b}$	d(Fe/Co…I)/Å	$2\sigma^2/\text{\AA}^2$	d(I-O)/Å	$2\sigma^2/{ m \AA}^2$	$d(\text{Fe}\cdots\text{Fe}) \text{ or } d(\text{I}\cdots\text{I})/\text{\AA}$	$2\sigma^2/{ m \AA}^2$
LiKFeIO ₆ ^c	Fe	2.008(3)	0.0075(6)	2.999(2)	0.0044(2)			5.187(14)	0.0157(30)
d	Ι			3.006(3)	0.0078(4)	1.877(2)	0.0056(2)	5.194(10)	0.0098(10)
LiRbFeIO ₆ ^e	Fe	2.019(3)	0.0080(5)	3.011(2)	0.0061(2)			5.208(15)	0.0196(34)
f	Ι			3.008(3)	0.0075(5)	1.878(2)	0.0047(3)	5.212(8)	0.0116(12)
LiCsFeIO ₆ ^g	Fe	2.017(3)	0.0066(6)	3.010(2)	0.0064(3)				
h	Ι			3.006(3)	0.0078(4)	1.877(2)	0.0056(2)	5.195(6)	0.0096(10)
LiKCoIO ₆ ⁱ	Co	1.873(3)	0.0095(5)	2.932(2)	0.0066(3)				
j	Ι			2.951(2)	0.0073(3)	1.854(2)	0.0110(3)		
LiRbCoIO ₆ ^k	Со	1.871(3)	0.0077(5)	2.930(3)	0.0055(3)				
1	Ι			2.946(2)	0.0057(3)	1.848(3)	0.0135(5)		
LiCsCoIO ₆ ^m	Со	1.863(3)	0.0126(5)	2.916(2)	0.0080(3)				
n	Ι			2.943(2)	0.0062(3)	1.851(3)	0.0130(4)		

"Systematic errors in data collection and analysis result in bond lengths reliable to ± 0.02 Å, standard deviations on the data listed above reflect statistical errors in the fitting. "bebye-Waller factor. "R = 25.2%." R = 19.7%." R = 19.1%." R = 24.7%." R = 30.4%." R = 18.6%." R = 26.2%." R = 20.6%." R = 25.5%." R = 24.4%." R factor defined as $\left[\int (\chi^T - \chi^E) k^3 dk / \int \chi^E k^3 dk \right] \times 100\%$.

Fig. 3 UV-VIS (diffuse reflectance) spectrum of LiCsFeIO₆

cobalt(II). The isoelectronic MNiIO₆ are also weakly paramagnetic,³ owing to lower oxidation state impurities. The ⁷Li MAS NMR spectrum of KLiCoIO₆ showed a single resonance at δ 0.4 (relative to [Li(H₂O)₄]⁺) showing the compound contains a single lithium site. Although the lithium chemical shift range is very small (*ca.* 10 ppm),²¹ the very similar shift to the [Li(H₂O)₄]⁺ reference probably indicates that lithium occupies a tetrahedral site. Since larger alkali metals will prefer an octahedral site, this probably explains the specificity of these systems for lithium. However in the absence of crystallographic data this cannot be confirmed.

EXAFS Data

PXRD showed that all the LiMFeIO₆ and LiMCoIO₆ samples obtained were amorphous, and attempts to obtain crystalline samples by, for example, prolonged heating of the reaction mixtures have been unsuccessful. However based upon the spectroscopic evidence of IO₆ and FeO₆/CoO₆ groups, iron or cobalt and iodine K-edge EXAFS (extended X-ray absorption fine structure) spectroscopy has been used to provide some structural information. EXAFS in combination with PXRD has been previously applied to the study of M[M'IO₆] compounds.¹⁻⁴ The structural information obtained from both the iron/cobalt and iodine edge data are independent of the alkali metal present (Table 2), and only one example needs to be discussed in each case. Refinement of the iron edge data on LiRbFeIO₆ (Fig. 4) shows a shell of six oxygens at 2.02 Å, a second shell of three iodines at 3.01 Å, and a further feature at 5.21 Å is tentatively attributed to the Fe…Fe repeat distance. The iodine-edge data show six oxygens at 1.88 Å and three irons at 3.01 Å, and $d(I \cdots I)$ at 5.21 Å. For LiKCoIO₆ the Co K-edge EXAFS data were fitted to a first shell of six oxygens at 1.87 Å and a second shell of three iodines at 2.93 Å. The iodine K-edge data on the same complex placed d(I-O) at 1.85 Å and $d(Co\cdots I)$ at 2.95 Å, the latter in good agreement with the same distance determined from the cobalt-edge data. In contrast to the iron complexes, neither the cobalt- nor the iodine-edge data on LiMCoIO₆ showed significant features at *ca*. 5 Å which would correspond to the repeat distance within the layers.

These data provide strong support for the presence of the layered structure proposed (Fig. 5) and may be compared with the data on K[NiIO₆] $[d(Ni-O)=1.87 \text{ Å}, d(Ni\cdots I)=2.86 \text{ Å}]^3$ and K[MnIO₆] $[d(Mn-O)=1.89 \text{ Å}, d(Nn\cdots I)=2.89 \text{ Å}].^4$ The difference in the d(M-O) distances correlate well with the ionic radii of the transition metal [Fe³⁺ (high spin) 0.65 Å, Co³⁺ (low spin) 0.55 Å, Ni⁴⁺ 0.54 Å and Mn⁴⁺ 0.58 Å].²² The d(Fe-O) and d(Co-O) are also in excellent agreement with those found in M_n[Fe₄I₃O₂₄H_{15-n}] (1.97–1.99 Å)⁸ and H₃[Co₄I₃O₂₄H₁₂] (1.88–1.92 Å).^{11,12} The absence of any dependence of the EXAFS data on the alkali metal is also a characteristic of this structure type.²

Other compounds

Attempts were made to incorporate other trivalent 3d transition-metal ions. Ozonisation of a hot alkaline solution containing Li⁺, KIO₄ and [Ni(H₂O)₆]²⁺ did not lead to any oxidation of the nickel, whilst heating a weakly acid solution containing the same ions with peroxodisulfate, K₂S₂O₈, slowly produced a black precipitate. The latter was identified as the known nickel(IV) complex KNiIO₆.³ Similarly warming a weakly acidic solution containing Li⁺, KIO₄ and $[Mn(H_2O)_6]^{2+}$ produced the known red manganese(IV) complex KMnIO₆.⁴ Addition of a solution of $[Cr(H_2O)_6]^{3+}$ to a warm alkaline solution containing Li⁺ and KIO₄ rapidly gave - by a deep yellow solution, identified as containing $[CrO_4]^2$ its UV-VIS spectrum. As discussed previously,¹ periodate appears to favour one oxidation state of each metal which is surprising in comparison to similar π donors like oxide or halide which form stable compounds with a range of oxidation states of most transition metals.

Conclusion

The compounds LiMFeIO_6 and LiMCoIO_6 have been isolated and characterised. The structures are related to those of MM'IO₆, but with a trivalent metal and Li instead of a tetravalent M'. These are the first examples of this type of compound to incorporate a trivalent metal. Attempts to form analogues with Cr^{3+} , Ni^{3+} or Mn^{3+} have failed.

Fig. 4 (a) Background subtracted Fe K-edge EXAFS and (b) corresponding Fourier transform of LiRbFeIO₆, and (c) background subtracted iodine K-edge EXAFS and (d) corresponding Fourier transform of LiKFeIO₆ (broken line theoretical fit, full line experimental data)

Fig. 5 Proposed structure of $LiMFeIO_6$ showing the IO_6 and $Fe(Co)O_6$ octahedra and M ions as spheres. The Li ions are not shown.

Experimental

EXAFS measurements were made at the Daresbury Synchrotron Radiation Source on stations 7.1 and 9.2 and 9.3, data being collected from powdered samples at room temperature in transmission mode. Details of the data collection and analysis were similar to those described previously.^{2,4} The compounds KIO₄ and the Anderson polyanions^{2,8} were used as model compounds to check the EXAFS data collection and treatment. The coordination numbers of the shells were fixed, but all other parameters were refined. ⁷Li MAS NMR spectra were obtained from powdered samples in a silicon nitride rotor, using a Bruker AM300 instrument at 116.65 MHz with spinning speeds of 4.5 and 6.2 KHz. The pulse was 1 µs and the relaxation delay 0.25 s, typically 200 transients being collected. The reference was aqueous 1 mol dm⁻³ LiCl. Other physical measurements were made as described previously.^{2,3,8}

LiKFeIO₆

Potassium periodate, KIO₄ (2.3 g, 1 mmol), LiNO₃ (0.69 g, 1 mmol) and KOH (1.1 g, 1 mmol) were dissolved in water (200 cm³) and the mixture heated with stirring to 95 °C. The pH was adjusted to 9 if necessary by addition of more KOH, and then a solution of Fe(NO₃)₃·9H₂O (4.0 g, 1 mmol) in water (25 cm³) added dropwise. During this process the pH was monitored, more KOH being added as required to keep the pH \ge 9. An immediate fawn precipitate appeared, and the mixture was stirred at 95 °C for 30 min. The solution was filtered hot (G4 sinter), and the yellow solid washed with cold water $(3 \times 25 \text{ cm}^3)$ and dried, first *in vacuo*, and then in air at 100 °C overnight. Yield ca. 3.0 g, 92%. Analysis: Found: Li, 2.0; Fe, 17.4; I, 39.6; K, 11.8. LiKFeIO₆ requires Li, 2.1; Fe, 17.2; I, 39.1; K, 12.0%. LiRbFeIO₆ and LiCsFeIO₆ were made similarly. Analysis: LiRbFeIO₆: Found: Li, 1.8, Fe, 15.2; I, 34.5. LiRbFeIO₆ requires Li, 1.9; Fe, 15.0; I, 34.2%. LiCsFeIO₆: Found: Li, 1.7; Fe, 13.5; I, 31.4. LiCsFeIO₆ requires Li, 1.7; Fe, 13.3; I, 30.3%.

LiKCoIO₆

Potassium periodate, KIO₄ (2.3 g, 1 mmol), LiNO₃ (0.69 g, 1 mmol) and KOH (1.1 g, 1 mmol) were dissolved in water (200 cm³), the mixture heated with stirring to 80 °C, and a fast stream of ozonised oxygen (*ca.* 3% O₃ by volume) bubbled through it. The pH was adjusted to 9 if necessary by addition of more KOH, and then a solution of Co(NO₃)₂·7H₂O (3.8 g, 1 mmol) in water (100 cm³) added slowly dropwise. During this process the pH was monitored, more KOH being added if required to keep the pH \ge 9. A deep green precipitate formed

rapidly, and the mixture was stirred at 80 °C for 30 min maintaining the flow of ozone. The solution was filtered hot (G4 sinter), and the olive-green solid washed with hot water $(3 \times 25 \text{ cm}^3)$ and dried in vacuo for 48 h. Yield ca. 2.6 g, 80%. Analysis: Found: Li, 2.0; Co, 18.2; I, 39.0; K, 11.5. LiKCoIO₆ requires Li, 2.1; Co, 18.0; I, 38.7; K, 11.9%. LiRbCoIO₆ and LiCsCoIO₆ were made similarly. Analysis: LiRbCoIO₆: Found: Li, 1.9; Co, 15.6; I, 33.4; LiRbCoIO₆ requires Li, 1.8; Co, 15.7; I, 33.9%. LiCsCoIO₆: Found: Li, 1.5; Co, 14.2; I, 29.8. LiCsCoIO₆ requires Li, 1.6; Co, 14.0; I, 30.1%.

We thank the EPSRC for support and the Director of the Daresbury Laboratory for provision of facilities for the EXAFS studies. We are grateful to Dr E. G. Hope for collection of some of the iodine edge EXAFS data, Dr S. E. Dann for the ⁷Li NMR spectra and Mr A. J. Brookes for running Raman spectra.

References

- W. Levason, Coord. Chem. Rev., in press.
- D. B. Currie, W. Levason, R. D. Oldroyd and M. T. Weller, 2 J. Mater. Chem., 1993, 3, 447.
- D. B. Currie, W. Levason, R. D. Oldroyd and M. T. Weller, 3 J. Chem. Soc., Dalton Trans., 1994, 1483.
- 4 W. Levason, M. D. Spicer and M. Webster, Inorg. Chem., 1992, 31, 2575.

- W. Levason and R. D. Oldroyd, Polyhedron, 1996, 15, 409. 5
- O. Procke and A. Slouf, Coll. Czech. Chem. Commun., 1939, 11, 273. 6 7
- H. Siebert and G. Weighardt, Z. Naturforsch., Teil B, 1972, 27, 1299
- E. M. Jones, W. Levason, R. D. Oldroyd, M. Webster, M. Thomas 8 and J. Hutchings, J. Chem. Soc., Dalton Trans., 1995, 3367
- 9 M. J. M. Campbell and C. J. Nyman, Inorg. Chem., 1962, 1, 842.
- 10 M. W. Lister and Y. Yoshino, Can. J. Chem., 1960, 38, 45.
- 11 L. C. W. Baker, L. Lebioda, J. Grochowski and H. G. Mukherjee, J. Am. Chem. Soc., 1980, 102, 3274; L. Lebioda, M. Ciechanowicz-Rutkowska, L. C. W. Baker and J. Grochowski, Acta Crystallogr., Sect. B, 1980, 36, 2530.
- H. Kondo, A. Kobayashi and Y. Sasaki, Bull. Chem. Soc. Jpn., 12 1982, 55, 2113.
- 13
- H. H. Willard, *Inorg. Synth.*, 1939, 1, 168.
 H. Siebert and G. Weighardt, *Spectrochim. Acta, Part A*, 1971, 14 27. 1677.
- 15 M. Robert and P. Tarte, Spectrochim. Acta, Part A, 1977, 33, 155.
- 16 S. J. Lippard, Angew. Chem., Int. Ed. Engl., 1988, 27, 344.
- 17 B. A. Goodman and J. B. Raynor, Adv. Inorg. Chem. Radiochem., 1970, 13, 135.
- 18 Moessbauer Spectroscopy, ed. D. P. E. Dickson and F. J. Berry Cambridge University Press, Cambridge, 1986.
- 19 L. Malaprade, Bull. Soc. Chim. Fr., 1939, 6, 223.
- D. A. Johnson and A. G. Sharpe, J. Chem. Soc. A, 1966, 798. 20
- 21 H. Guenther, in Encyclopaedia of NMR, ed. D. M. Grant and R. K. Harris, John Wiley, New York, 1996, vol. 5, p. 2807.
 R. D. Shannon and R. D. Prewitt, *Acta Crystallogr., Sect. B*, 1970,
- 22 **26**. 1046

Paper 7/03445H; Received 19th May, 1997